Cargo-Selected Transport from the Mitochondria to Peroxisomes Is Mediated by Vesicular Carriers

نویسندگان

  • Margaret Neuspiel
  • Astrid C. Schauss
  • Emelie Braschi
  • Rodolfo Zunino
  • Peter Rippstein
  • Richard A. Rachubinski
  • Miguel A. Andrade-Navarro
  • Heidi M. McBride
چکیده

Mitochondria and peroxisomes share a number of common biochemical processes, including the beta oxidation of fatty acids and the scavenging of peroxides. Here, we identify a new outer-membrane mitochondria-anchored protein ligase (MAPL) containing a really interesting new gene (RING)-finger domain. Overexpression of MAPL leads to mitochondrial fragmentation, indicating a regulatory function controlling mitochondrial morphology. In addition, confocal- and electron-microscopy studies of MAPL-YFP led to the observation that MAPL is also incorporated within unique, DRP1-independent, 70-100 nm diameter mitochondria-derived vesicles (MDVs). Importantly, vesicles containing MAPL exclude another outer-membrane marker, TOM20, and vesicles containing TOM20 exclude MAPL, indicating that MDVs selectively incorporate their cargo. We further demonstrate that MAPL-containing vesicles fuse with a subset of peroxisomes, marking the first evidence for a direct relationship between these two functionally related organelles. In contrast, a distinct vesicle population labeled with TOM20 does not fuse with peroxisomes, indicating that the incorporation of specific cargo is a primary determinant of MDV fate. These data are the first to identify MAPL, describe and characterize MDVs, and define a new intracellular transport route between mitochondria and peroxisomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes

Mitochondrial respiration relies on electron transport, an essential yet dangerous process in that it leads to the generation of reactive oxygen species (ROS). ROS can be neutralized within the mitochondria through enzymatic activity, yet the mechanism for steady-state removal of oxidized mitochondrial protein complexes and lipids is not well understood. We have previously characterized vesicul...

متن کامل

Vps35 Mediates Vesicle Transport between the Mitochondria and Peroxisomes

Mitochondria-derived vesicles (MDVs) have been shown to transport cargo from the mitochondria to the peroxisomes. Mitochondria and peroxisomes share common functions in the oxidation of fatty acids and the reduction of damaging peroxides. Their biogenesis is also linked through both the activation of master transcription factors such as PGC-1alpha and the common use of fission machinery, includ...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface.

We have isolated a membrane fraction enriched in a class of transport carriers that form at the trans Golgi network (TGN) and are destined for the cell surface in HeLa cells. Protein kinase D (PKD) is required for the biogenesis of these carriers that contain myosin II, Rab6a, Rab8a, and synaptotagmin II, as well as a number of secretory and plasma membrane-specific cargoes. Our findings reveal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008